Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.577
Filtrar
1.
Sci Rep ; 14(1): 8200, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589728

RESUMO

Breast cancer (BC) is a leading cause of global cancer-related mortality in women, necessitating accurate tumor classification for timely intervention. Molecular and histological factors, including PAM50 classification, estrogen receptor α (ERα), breast cancer type 1 susceptibility protein (BRCA1), progesterone receptor (PR), and HER2 expression, contribute to intricate BC subtyping. In this work, through a combination of bioinformatic and wet lab screenings, followed by classical signal transduction and cell proliferation methods, and employing multiple BC cell lines, we identified enhanced sensitivity of ERα-positive BC cell lines to ALK and MELK inhibitors, inducing ERα degradation and diminishing proliferation in specific BC subtypes. MELK inhibition attenuated ERα transcriptional activity, impeding E2-induced gene expression, and hampering proliferation in MCF-7 cells. Synergies between MELK inhibition with 4OH-tamoxifen (Tam) and ALK inhibition with HER2 inhibitors revealed potential therapeutic avenues for ERα-positive/PR-positive/HER2-negative and ERα-positive/PR-negative/HER2-positive tumors, respectively. Our findings propose MELK as a promising target for ERα-positive/PR-positive/HER2-negative BC and highlight ALK as a potential focus for ERα-positive/PR-negative/HER2-positive BC. The synergistic anti-proliferative effects of MELK with Tam and ALK with HER2 inhibitors underscore kinase inhibitors' potential for selective treatment in diverse BC subtypes, paving the way for personalized and effective therapeutic strategies in BC management.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Proliferação de Células , Células MCF-7 , Fenótipo , Receptores Proteína Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo
2.
Cell Biochem Funct ; 42(3): e4014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616346

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERß is often considered to be safer. In this review, we explore the role of ERß in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aß) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERß activation and the process underlying ERß's neuroprotective mechanisms in AD and PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Feminino , Masculino , Humanos , Doença de Parkinson/tratamento farmacológico , Estrogênios/farmacologia , Receptor beta de Estrogênio/genética , Receptor alfa de Estrogênio/genética , Doença de Alzheimer/tratamento farmacológico
3.
J Hazard Mater ; 470: 134233, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603913

RESUMO

Food additives are chemicals incorporated in food to enhance its flavor, color and prevent spoilage. Some of these are associated with substantial health hazards, including developmental disorders, increase cancer risk, and hormone disruption. Hence, this study aimed to comprehend the in-silico toxicology framework for evaluating mutagenic and xenoestrogenic potential of food additives and their association with breast cancer. A total of 2885 food additives were screened for toxicity based on Threshold of Toxicological Concern (TTC), mutagenicity endpoint prediction, and mutagenic structural alerts/toxicophores identification. Ten food additives were identified as having mutagenic potential based on toxicity screening. Furthermore, Protein-Protein Interaction (PPI) analysis identified ESR1, as a key hub gene in breast cancer. KEGG pathway analysis verified that ESR1 plays a significant role in breast cancer pathogenesis. Additionally, competitive interaction studies of the predicted potential mutagenic food additives with the estrogen receptor-α were evaluated at agonist and antagonist binding sites. Indole, Dichloromethane, Trichloroethylene, Quinoline, 6-methyl quinoline, Ethyl nitrite, and 4-methyl quinoline could act as agonists, and Paraldehyde, Azodicarbonamide, and 2-acetylfuranmay as antagonists. The systematic risk assessment framework reported in this study enables the exploration of mutagenic and xenoestrogenic potential associated with food additives for hazard identification and management.


Assuntos
Receptor alfa de Estrogênio , Aditivos Alimentares , Mutagênicos , Mutagênicos/toxicidade , Aditivos Alimentares/toxicidade , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Humanos , Medição de Risco , Simulação por Computador , Disruptores Endócrinos/toxicidade , Testes de Mutagenicidade , Neoplasias da Mama/genética , Simulação de Acoplamento Molecular
4.
Egypt J Immunol ; 31(2): 87-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615265

RESUMO

Breast cancer is the most malignant tumor among women in the world. Single nucleotide polymorphisms (SNPs) might better predict breast cancer prognosis. PvuII (T/C substitution), XbaI (A/G substitution), and aryl hydrocarbon (AhR) (G/A substitution) were evaluated as possible genetic prognostic factors for breast cancer. The aim of the current study was to assess the relation between PvuII (rs2234693), XbaI (rs9340799), and aryl hydrocarbon receptor gene polymorphisms AhR (rs2066853) in breast cancer prognosis. This was a case-control study that included 120 breast cancer patients classified into two groups. The first group included 60 patients with good prognostic factors, and the second group included 60 patients with poor prognostic factors. Blood samples were taken from all study participants to perform the genotyping assay. We found that positive genotypes of PvuII, XbaI, and AhR polymorphisms were strongly associated with better prognostic factors for breast cancer patients, while negative genotypes of PvuII and XbaI were more and significantly prevalent in poor prognostic breast cancer patients. We conclude that PvuII T/C, XbaI G/A, and AhR G/A alleles may be prognostic for breast cancer progression.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Receptores de Hidrocarboneto Arílico , Feminino , Humanos , Neoplasias da Mama/genética , Estudos de Casos e Controles , Egito/epidemiologia , Receptor alfa de Estrogênio/genética , Polimorfismo de Nucleotídeo Único , Prognóstico , Receptores de Hidrocarboneto Arílico/genética , População do Norte da África/genética
5.
Protein Sci ; 33(4): e4940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511482

RESUMO

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estradiol/química , Estradiol/metabolismo , Ligantes , Tamoxifeno/farmacologia , Tamoxifeno/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mamíferos
6.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542136

RESUMO

HER2-positive breast cancer is associated with aggressive behavior and reduced survival rates. Calcitriol restores the antiproliferative activity of antiestrogens in estrogen receptor (ER)-negative breast cancer cells by re-expressing ERα. Furthermore, calcitriol and its analog, EB1089, enhance responses to standard anti-cancer drugs. Therefore, we aimed to investigate EB1089 effects when added to the combined treatment of lapatinib and antiestrogens on the proliferation of HER2-positive breast cancer cells. BT-474 (ER-positive/HER2-positive) and SK-BR-3 (ER-negative/HER2-positive) cells were pre-treated with EB1089 to modulate ER expression. Then, cells were treated with EB1089 in the presence of lapatinib with or without the antiestrogens, and proliferation, phosphorylation array assays, and Western blot analysis were performed. The results showed that EB1089 restored the antiproliferative response to antiestrogens in SK-BR-3 cells and improved the inhibitory effects of the combination of lapatinib with antiestrogens in the two cell lines. Moreover, EB1089, alone or combined, modulated ERα protein expression and reduced Akt phosphorylation in HER2-positive cells. EB1089 significantly enhanced the cell growth inhibitory effect of lapatinib combined with antiestrogens in HER2-positive breast cancer cells by modulating ERα expression and Akt phosphorylation suppression. These results highlight the potential of this therapeutic approach as a promising strategy for managing HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Calcitriol/análogos & derivados , Humanos , Feminino , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Calcitriol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Antagonistas de Estrogênios/uso terapêutico , Linhagem Celular Tumoral
7.
Gene ; 911: 148357, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462023

RESUMO

PURPOSE: The most common malignancy among women worldwide is breast cancer. The estrogen receptor plays a vital role in this cancer. One of the most well-known mechanisms that affects the activity of this receptor is its phosphorylation by protein kinase pathways. Hesperetin, a flavonoid abundant in citrus species such as lemons, grapefruits, and oranges, is the aglycone form of hesperidin. It has undergone thorough evaluation for its potential anti-cancer properties, particularly in the context of breast cancer. Studies have shown that hesperetin has an effect on intracellular kinase pathways. The aim of this study was to investigate the effect of hesperetin on the expression, phosphorylation and activity of estrogen receptor alpha (ERα) in MCF-7 breast cancer cell line. STUDY DESIGN AND METHODS: MCF-7 cells were cultured in RPMI-1640 phenol red-free medium supplemented with charcoal-stripped FBS and treated with hesperetin. The MTT method was used to evaluate cell survival. The levels of the ERα protein and its phosphorylated form (Ser118) were determined via western blotting. A luciferase reporter vector was used to evaluate ERE activity. RESULTS: The results of this study indicated that hesperetin reduced the survival of MCF-7 cells in a dose-dependent manner. The expression and phosphorylation (at Ser118) of the ERα significantly increased and decreased, respectively, in the groups treated with hesperetin. Hesperetin increased the activity of the ERα in the absence of E2, although these differences were not statistically significant. Conversely, in the presence of E2, hesperetin caused a significant decrease in receptor activity. CONCLUSION: Based on the results of this study, it can be concluded that hesperetin has a significant effect on ERα expression, phosphorylation and activity.


Assuntos
Neoplasias da Mama , Hesperidina , Feminino , Humanos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Hesperidina/farmacologia , Fosforilação , Estradiol , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células
8.
Sci Rep ; 14(1): 6873, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519482

RESUMO

Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Humanos , Feminino , Quinases Ciclina-Dependentes/genética , Proteoma/genética , Proteômica , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Mutação , Estrogênios , Receptores de Estrogênio/genética , Fosfoproteínas/genética
9.
Sci Rep ; 14(1): 6854, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514828

RESUMO

The high risk of neurological disorders in postmenopausal women is an emerging medical issue. Based on the hypothesis of altered estrogen receptors (ERα and ß) after the decline of estrogen production, we investigated the changes in ERs expressions across brain regions and depressive/amnesic behaviors. C57BL/6J female mice were ovariectomized (OVX) to establish a menopausal condition. Along with behavior tests (anxiety, depression, and memory), the expression of ERs, microglial activity, and neuronal activity was measured in six brain regions (hippocampus, prefrontal cortex, striatum, raphe nucleus, amygdala, and hypothalamus) from 4 to 12 weeks after OVX. Mice exhibited anxiety- and depressive-like behaviors, as well as memory impairment. These behavioral alterations have been linked to a suppression in the expression of ERß. The decreased ERß expression coincided with microglial-derived neuroinflammation, as indicated by notable activations of Ionized calcium-binding adapter molecule 1 and Interleukin-1beta. Additionally, the activity of brain-derived neurotrophic factor (BDNF), particularly in the hippocampus, decreased in a time-dependent manner from 4 to 12 weeks post-OVX. Our study provides evidence shedding light on the susceptibility to memory impairment and depression in women after menopause. This susceptibility is associated with the suppression of ERß and alteration of ERα in six brain regions.


Assuntos
Receptor beta de Estrogênio , Receptores de Estrogênio , Animais , Feminino , Humanos , Camundongos , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Ovariectomia , Receptores de Estrogênio/metabolismo
10.
J Med Chem ; 67(6): 4870-4888, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478882

RESUMO

(E/Z)-3-(4-((E)-1-(4-Hydroxyphenyl)-2-phenylbut-1-enyl)phenyl)acrylic acid (GW7604) as a carrier was esterified with alkenols of various lengths and coordinated through the ethylene moiety to PtCl3, similar to Zeise's salt (K[PtCl3(C2H4)]). The resulting GW7604-Alk-PtCl3 complexes (Alk = Prop, But, Pent, Hex) degraded in aqueous solution only by exchange of the chlorido ligands. For example, GW7604-Pent-PtCl3 coordinated the amino acid alanine in the cell culture medium, bound the isolated nucleotide 5'-GMP, and interacted with the DNA (empty plasmid pSport1). It accumulated in estrogen receptor (ER)-positive MCF-7 cells primarily via cytosolic vesicles, while it was only marginally taken up in ER-negative SKBr3 cells. Accordingly, GW7604-Pent-PtCl3 and related complexes were inactive in SKBr3 cells. GW7604-Pent-PtCl3 showed high affinity to ERα and ERß without mediating agonistic or ER downregulating properties. GW7604-Alk ligands also increased the cyclooxygenase (COX)-2 inhibitory potency of the complexes. In contrast to Zeise's salt, the GW7604-Alk-PtCl3 complexes inhibited COX-1 and COX-2 to the same extent.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/genética , Células MCF-7 , Receptores Proteína Tirosina Quinases , Receptor beta de Estrogênio , Ligantes
11.
Life Sci ; 344: 122581, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514004

RESUMO

Hypocretin is synthesized exclusively in the hypothalamus and distributes inputs to several areas of the brain, which may play an important role in depression. Our previous study showed that hypocretin-1 was increased in the lateral hypothalamus in female patients with depression compared to female controls. Estrogen acts through estrogen receptor (ER)α and ERß. We studied the possibility of a direct action of estrogen receptors on the expression of human hypocretin. We found that hypocretin-1 plasma levels were significantly higher in female patients with depression than in female controls. Female depression estrogen receptors and hypocretin are colocalized in the human lateral hypothalamus, PC12, and SK-N-SH cells. The estrogen receptor response elements (ERE) that exist in the hypocretin promoter region may directly regulate the gene expression of hypocretin. The synchronicity of change of hypocretin and estradiol both in hypothalamus and plasma was verified in female rats. In the presence of estradiol, specific binding occurs between the recombinant human ER and hypocretin-ERE. Expression of ER combined with estradiol repressed hypocretin promoter activity via the ERE. In conclusion, we found that estradiol may directly affect hypocretin neurons in the human hypothalamus via ER binding to the hypocretin-ERE, which may lead to the sex-specific pathogenesis of depression.


Assuntos
Estrogênios , Receptores de Estrogênio , Masculino , Humanos , Ratos , Feminino , Animais , Orexinas/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Receptor beta de Estrogênio/metabolismo
12.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
13.
J Clin Oncol ; 42(10): 1193-1201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381994

RESUMO

PURPOSE: The US Food and Drug Administration (FDA) approved elacestrant for the treatment of postmenopausal women or adult men with estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor 1 (ESR1)-mutated advanced or metastatic breast cancer with disease progression after at least one line of endocrine therapy (ET). PATIENTS AND METHODS: Approval was based on EMERALD (Study RAD1901-308), a randomized, open-label, active-controlled, multicenter trial in 478 patients with ER+, HER2- advanced or metastatic breast cancer, including 228 patients with ESR1 mutations. Patients were randomly assigned (1:1) to receive either elacestrant 345 mg orally once daily (n = 239) or investigator's choice of ET (n = 239). RESULTS: In the ESR1-mut subgroup, EMERALD demonstrated a statistically significant improvement in progression-free survival (PFS) by blinded independent central review assessment (n = 228; hazard ratio [HR], 0.55 [95% CI, 0.39 to 0.77]; P value = .0005). Although the overall survival (OS) end point was not met, there was no trend toward a potential OS detriment (HR, 0.90 [95% CI, 0.63 to 1.30]) in the ESR1-mut subgroup. PFS also reached statistical significance in the intention-to-treat population (ITT, N = 478; HR, 0.70 [95% CI, 0.55 to 0.88]; P value = .0018). However, improvement in PFS in the ITT population was primarily attributed to results from patients in the ESR1-mut subgroup. More patients who received elacestrant experienced nausea, vomiting, and dyslipidemia. CONCLUSION: The approval of elacestrant in ER+, HER2- advanced or metastatic breast cancer was restricted to patients with ESR1 mutations. Benefit-risk assessment in the ESR1-mut subgroup was favorable on the basis of a statistically significant improvement in PFS in the context of an acceptable safety profile including no evidence of a potential detriment in OS. By contrast, the benefit-risk assessment in patients without ESR1 mutations was not favorable. Elacestrant is the first oral estrogen receptor antagonist to receive FDA approval for patients with ESR1 mutations.


Assuntos
Neoplasias da Mama , Tetra-Hidronaftalenos , Adulto , Estados Unidos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , United States Food and Drug Administration , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
14.
Breast Cancer Res ; 26(1): 33, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409088

RESUMO

INTRODUCTION: Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS: A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 µM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS: It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS: The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica
15.
Clin Transl Med ; 14(2): e1558, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38299307

RESUMO

There have been contradictory reports on the biological role of transforming growth factor-ßs (TGFßs) in breast cancer (BC), especially with regard to their ability to promote epithelial-mesenchymal transition (EMT). Here, we show that TGFß2 is preferentially expressed in mesenchymal-like BCs and maintains the EMT phenotype, correlating with cancer stem cell-like characteristics, growth, metastasis and chemo-resistance and predicting worse clinical outcomes. However, this is only true in ERα- BC. In ERα+ luminal-type BC, estrogen receptor interacts with p-Smads to block TGFß signalling. Furthermore, we also identify a microRNAs (miRNAs) signature (miRNAsTGFß2 ) that is weakened in TGFß2-overexpressing BC cells. We discover that TGFß2-Snail1 recruits enhancer of zeste homolog-2 to convert miRNAsTGFß2 promoters from an active to repressive chromatin configuration and then repress miRNAsTGFß2 transcription, forming a negative feedback loop. On the other hand, miRNAsTGFß2 overexpression reverses the mesenchymal-like traits in agreement with the inhibition of TGFß2-Snail1 signalling in BC cells. These findings clarify the roles of TGFß2 in BC and suggest novel therapeutic strategies based on the TGFß2-Snail1-miRNAsTGFß2 loop for a subset type of human BCs.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , MicroRNAs/genética , Receptor alfa de Estrogênio/genética , Fator de Crescimento Transformador beta/genética , Transdução de Sinais/genética
16.
Biotechnol J ; 19(2): e2300560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403459

RESUMO

Tamoxifen (TAM) resistance is finally developed in over 40% of patients with estrogen receptor α-positive breast cancer (ERα+ -BC), documenting that discovering new molecular subtype is needed to confer perception to the heterogeneity of ERα+ -BC. We obtained representative gene sets subtyping ERα+ -BC using gene set variation analysis (GSVA), non-negative matrix factorization (NMF), and COX regression methods on the basis of METABRIC, TCGA, and GEO databases. Furthermore, the risk score of ERα+ -BC subtyping was established using least absolute shrinkage and selection operator (LASSO) regression on the basis of genes in the representative gene sets, thereby generating the two subtypes of ERα+ -BC. We further found that minichromosome maintenance complex component 2 (MCM2) functioned as the hub gene subtyping ERα+ -BC using GO, KEGG, and MCODE. MCM2 expression was capable for specifically predicting 1-year overall survival (OS) of ERα+ -BC and correlated with T stage, AJCC stage, and tamoxifen (TAM) sensitivity of ERα+ -BC. The downregulation of MCM2 expression inhibited proliferation, migration, and invasion of TAM-resistant cells and promoted G0/G1 arrest. Altogether, tamoxifen resistance entails that MCM2 is a hub gene subtyping ERα+ -BC, providing a novel dimension for discovering a potential target of TAM-resistant BC.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Componente 2 do Complexo de Manutenção de Minicromossomo , Tamoxifeno , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Tamoxifeno/farmacologia
17.
Eur J Obstet Gynecol Reprod Biol ; 296: 65-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402782

RESUMO

OBJECTIVE: Estrogen and progesterone play key roles in the maintenance of pregnancy, and their function is mediated via estrogen receptor 1 (ESR1)/estrogen receptor 2 (ESR2) and progesterone receptor (PGR), respectively. It has been suggested the genetic variations in ESR1, ESR2, and PGR may contribute to recurrent pregnancy loss (RPL); however, the available evidence remains controversial. This meta-analysis aimed to explore the relation of various polymorphisms in ESR1, ESR2, and PGR genes to the risk of RPL. METHODS: A systematic literature search was conducted using PubMed and Scopus up to August 2023 to obtain relevant studies. The odds ratios (ORs) with 95% confidence intervals (95% CIs) were computed and pooled with the use of random-effects models to test the associations. RESULTS: A total of 31 studies with 12 different polymorphisms, including 5 polymorphisms for ESR1, 3 polymorphisms for ESR2, and 4 polymorphisms for PGR, were analyzed in this meta-analysis. Overall, no significant relationship was found between various polymorphisms of ESR1 and ESR2 with RPL in any of the genetic analysis models. PGR rs590688 (C > G) polymorphism was significantly related to the elevated risk of RPL under the dominant (OR = 1.67; 95 %CI: 1.15-2.44), allelic (OR = 1.55; 95 %CI: 1.13-2.12), and GC vs. CC (OR = 1.55; 95 %CI: 1.07-2.23) models. No significant association was identified for other variants of PGR gene. CONCLUSION: Unlike estrogen receptors, variations in PGR rs590688 (C > G) may be linked to the increased risk of RPL. More studies are required to confirm this finding.


Assuntos
Aborto Habitual , Receptores de Estrogênio , Gravidez , Feminino , Humanos , Receptores de Progesterona , Predisposição Genética para Doença , Polimorfismo Genético , Aborto Habitual/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Polimorfismo de Nucleotídeo Único
18.
Oncogene ; 43(15): 1113-1126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388711

RESUMO

Advanced breast cancers represent a major therapeutic challenge due to their refractoriness to treatment. Cancer-associated fibroblasts (CAFs) are the most abundant constituents of the tumor microenvironment and have been linked to most hallmarks of cancer. However, the influence of CAFs on therapeutic outcome remains largely unchartered. Here, we reveal that spatial coincidence of abundant CAF infiltration with malignant cells was associated with reduced estrogen receptor (ER)-α expression and activity in luminal breast tumors. Notably, CAFs mediated estrogen-independent tumor growth by selectively regulating ER-α signaling. Whereas most prototypical estrogen-responsive genes were suppressed, CAFs maintained gene expression related to therapeutic resistance, basal-like differentiation, and invasion. A functional drug screen in co-cultures identified effector pathways involved in the CAF-induced regulation of ER-α signaling. Among these, the Transforming Growth Factor-ß and the Janus kinase signaling cascades were validated as actionable targets to counteract the CAF-induced modulation of ER-α activity. Finally, genes that were downregulated in cancer cells by CAFs were predictive of poor response to endocrine treatment. In conclusion, our work reveals that CAFs directly control the luminal breast cancer phenotype by selectively modulating ER-α expression and transcriptional function, and further proposes novel targets to disrupt the crosstalk between CAFs and tumor cells to reinstate treatment response to endocrine therapy in patients.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Estrogênios/metabolismo , Transdução de Sinais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral/genética
19.
Maturitas ; 183: 107942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412592

RESUMO

OBJECTIVES: Fluctuating estradiol (E2) levels seem to be associated with menopausal symptoms, though not all women suffer from these symptoms to the same extent despite experiencing these hormonal changes. This suggests underlying, interindividual mechanisms, such as single-nucleotide polymorphisms (SNPs) influencing estrogen receptors α and ß, and the g-protein-coupled estrogen receptor (GPER). As research is scarce, we aimed to address this research gap by assessing genetic traits, E2 levels, and menopausal symptoms longitudinally. STUDY DESIGN: 129 perimenopausal women (aged 40-56 years) participated in the 13-month longitudinal Swiss Perimenopause Study. MAIN OUTCOME MEASURES: Menopausal symptoms were assessed fortnightly using the Menopause Rating Scale (MRS II). Salivary E2 levels were assessed 14 times over two non-consecutive months. Blood samples were collected using the dried blood spot (DBS) technique to analyze ESR1 rs2234693, ESR1 rs9340799, ESR2 rs1256049, ESR2 rs4906938, and GPER rs3808350. Group-based trajectory modeling was performed to identify interindividual trajectories of menopausal symptoms. Multinomial logistic regression models were employed to identify factors associated with these trajectories. RESULTS: Four distinct trajectory groups of menopausal symptoms were identified (increase, moderate, rebound, decrease). ER gene polymorphisms and E2 fluctuation were significantly associated with group membership. Furthermore, ER gene polymorphisms modulated the effect of E2 fluctuations on menopausal symptom trajectory. CONCLUSIONS: This study illuminates the multifaceted factors contributing to the individuality of the perimenopausal experience. ER gene polymorphisms emerged as integral factors by modulating the effect of E2 fluctuations on menopausal symptom trajectory. This underscores the intricate interplay of genetic factors, E2 fluctuations, and menopausal symptoms during perimenopause.


Assuntos
Menopausa , Perimenopausa , Feminino , Humanos , Suíça , Menopausa/genética , Estradiol , Polimorfismo de Nucleotídeo Único , Receptor alfa de Estrogênio/genética
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167057, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331111

RESUMO

During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a ß3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.


Assuntos
Adipócitos Bege , MicroRNAs , Obesidade Materna , Animais , Feminino , Masculino , Camundongos , Gravidez , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade Materna/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...